Lymphatic filariasis (LF) is a vector borne infectious disease caused by the nematode Wuchereria bancrofti, Brugia malayi, and Brugia timori. Over 120 million people are affected by LF in the world, of which two-thirds are in Asia. The infection restricts the normal flow of lymph from the infected area resulting in swelling of the extremities and causing permanent disability. As the available drugs for the treatment of LF are becoming ineffective due to the development of resistance, there is an urgent need to find new leads for drug development. In this study, asparaginyl-tRNA synthetase (AsnRS; PDB ID: 2XGT) essential for the protein bio-synthesis in the filarial nematode was used to carry out virtual screening (VS) of plant constituents from traditional Chinese medicine (TCM) database. Docking as well as E-pharmacophore based VS were carried out to identify the hits. The top scoring hits, Agri 1 (1,3,8-trihydroxy-4,5-dimethoxyxanthen-9-one-3-O-beta-D-glucopyranoside) and Agri 2 (5,7-dihydroxy-2-propylchromone 7-O-beta-D-glucopyranoside), constituents of Agrimonia pilosa, were selected for molecular dynamics (MD) simulation study for 10ns. MD simulation showed that both the glycosides Agri 1 and Agri 2 were forming stable interactions with the target protein. Moreover, docking and MD simulation of the lead A (1,3,8-trihydroxy-4,5-dimethoxyxanthen-9-one; Mol. Wt.: 304.25; CLogP: 3.07) and lead B (5,7-dihydroxy-2-propylchromone; Mol. Wt.: 220.22; CLogP: 3.02), the aglycones of Agri 1 and Agri 2, respectively, were carried out with the target AsnRS. The in silico investigations of the aglycones suggest that the lead B could be a suitable fragment-like lead molecule for anti-filarial drug discovery.
Read full abstract