ABSTRACTPeriodic flooding plays a key role in the ecology of floodplain rivers. Damming of such rivers can disturb flooding patterns and have a negative impact on commercial fish yield. The Volga River, the largest river in Europe, has a regulated flow regime after completion of a cascade of dams. Here, we study effects of damming on long‐term discharge variability and flood pulse characteristics. In addition, we evaluate the effects of the altered flood pulse on floodplain ecosystem functioning and commercial fish yields. Our results indicate that both flood pulse and fish populations of the Volga–Akhtuba floodplain have varied considerably over the past decades. After damming, annual maximum peak discharges have decreased, minimum discharges increased, but average discharges remained similar to pre‐damming conditions. Moreover, because of bed level incision of over 1.5 m, a higher discharge is needed to reach bankfull level and inundate the floodplains. Despite this significantly altered hydrological regime and subsequent morphological changes, current discharge management still provides significant spring flooding. However, commercial fish catches did decrease after damming, both in the main channel and in the floodplain lakes. All catches were dominated by species with a eurytopic flow preference, although catches from the main channel contained more rheophilic species, and floodplain catches contained more limnophilic and phytophilic species. The strong increase of opportunistic gibel carp (Carassius gibelio) around 1985 was apparent in the main channel and the floodplain lakes. Despite the hydrological changes, the decrease in overall catches, and the upsurge of gibel, we found a strong positive effect of flood magnitude in the previous year on commercial fish yield in the floodplain lakes. This suggests that under the current discharge management there still is an increased fish growth and/or survival during high floods and that functioning of the floodplain is at least partly intact. Copyright © 2011 John Wiley & Sons, Ltd.
Read full abstract