The hydrochemistry of river water in a karst basin has a rapid response to the rainstorm/flood process, which is an important process of the karst carbon cycle and should not be ignored. Based on the dynamic monitoring of the hydrochemical characteristics of the flood process in the Yangshuo section on November 8-12, 2015, the dynamic change in the main ions and the influencing factors were analyzed, and the concentration and flux of inorganic carbon from different sources were calculated. The results showed that the hydrochemistry types in different stages of the flood area belonged to the Ca-HCO3 type. The ions were mainly sourced from carbonate weathering, and affected by silicate weathering, rainfall, and human activities. Because of the hydrological process, the weathering strength of carbonate rocks sharply weakened at the beginning of the flood, and then gradually increased. The concentrations of HCO3-, Ca2+, and Mg2+ sharply decreased at the beginning of the flood, then gradually increased, and continued to increase in the second flood process because of the waterlogging in the karst system. Because of the waterlogging, the reaction time between water and rock become longer; thus, the concentrations are higher. The dynamic changes in SO42-, Cl-, Na+, and K+ were mainly affected by precipitation and human activities. At the beginning of the flood, the concentrations of SO42-, Cl-, Na+, and K+ increased because the runoff takes more ions sourced from activities. The concentrations of SO42-, Cl-, Na+, and K+ decreased with the decrease of easily transported substances. At the lowest point of concentration, SO42- and Cl- were mainly sourced from precipitation, and Na+ and K+ were mainly sourced from precipitation and silicate weathering. The weathering of carbonates by carbonic acid was the main source of inorganic carbon, accounting for 74.3% of total inorganic carbon on average. Because of the input of sulfuric/nitric acid, the contribution of the weathering of carbonates by sulfuric/nitric acid to the inorganic carbon cannot be ignored, and the contribution increased significantly in the flood, up to 31.7%. The geological carbon sinks before the flood, and during the first and second flood processes in the Yangshuo section were 1.28×108, 5.28×108, and 11.52×108 g·d-1, respectively. The geological carbon sink before the flood was equal to the annual average flux, whereas the geological carbon sink in the flood process was several times that of the annual average flux. Moreover, because of the significant difference in the weathering strength of carbonate rocks during the two floods, there was also a significant difference in the amount of geological carbon sink under the same discharge.
Read full abstract