Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has had a global impact and resulted in millions of deaths worldwide. The course of the Janus kinase signaling transducers and activators (JAK-STAT) pathway is an important molecular pathway that is involved in the cellular response to various cytokines and growth factors promoting an inflammatory response. The overactivation of the JAK-STAT signaling pathway in coronavirus disease 2019 (COVID-19) and its effect on acute respiratory distress syndrome (ARDS)-induced inflammatory processes was observed in various clinical articles that focused on JAK-STAT regulation regarding angiotensin converting enzyme 2 (ACE2) expression and cytokine storm release. Down-regulation of the JAK-STAT signaling pathway through inhibitors decreases the inflammatory response by decreasing cytokine storm release. However, the increased regulation of JAK-STAT in severe COVID-19 patients caused cytokines such as interferon alpha (IFN-α) to promote the phosphorylation of STATs. This response indicated an imbalance with JAK-STAT regulation and its inability to induce the transcription of interferon stimulated response elements. Furthermore, an increase in ACE2 regulation was noted to also increase JAK-STAT signaling, yet the down-regulation of JAK-STAT signaling can result in the overexpression of ACE2 by binding to SARS-CoV-2 and increasing STAT1 expression. Data suggest that inflammatory cytokines enhance the activation of ACE2 in endothelial cells via JAK-STAT pathway. Increasing the regulation of the JAK-STAT signaling pathway enhances the release of cytokines such as tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ), further expressing ACE2. The expression of ACE2 regulates STAT1 and STAT2 expression, leading to the up-regulation of the inflammasomal complexes in hyper-inflammatory responses from the JAK-STAT pathway. Through the review of various clinical reports, the effect of the JAK-STAT signaling pathway on ARDS-induced inflammatory response was observed and correlated with the expression of ACE2 and cytokine storm release in severe COVID-19 cases.
Read full abstract