In the general theory of relativity initially rationalized by Einstein, the gravity is considered as an occurrence ensuing from the spacetime curvature, which is in turn triggered by the presence of mass. This article provides a detailed analysis of spacetime curvature and gravitational waves, enhancing our understanding of general relativity and astrophysics. Using both analytical and numerical methods, we examined the gradient flow of scalar invariants, variations in the Ricci scalar, and gravitational wave propagation. New findings include the identification of unique curvature patterns around rotating black holes, a detailed comparison of gradient flow behavior in different spacetime geometries, and the discovery of a correlation between scalar invariant fluctuations and gravitational wave amplitudes. These findings validate numerical techniques and reveal how different parameters affect gravitational wave characteristics. While simplified models are used, the present study offers a robust framework for future research. Our work aligns with previous studies but also reveals unique aspects of wave behavior, with implications for quantum gravity and cosmology.
Read full abstract