The hydrogen abstraction reaction of the cyano radical with molecules of ethane presents some interesting points in the chemistry from ultra-cold to combustion environments especially with regard to HCN(v) product vibrational distribution. In order to understand its dynamics, a new analytical full-dimensional potential energy surface was developed, named PES-2023. It uses a combination of valence bond and mechanic molecular terms as the functional form, fitted to high-level abinitio calculations at the explicitly correlated CCSD(T)-F12/aug-cc-pVTZ level on a reduced and selected number of points describing the reactive process. The new surface showed a continuous and smooth behavior, describing reasonably the topology of the reaction: high exothermicity, low barrier, and presence of intermediate complexes in the entrance and exit channels. Using quasi-classical trajectory calculations (QCT) on the new PES-2023, a dynamics study was performed at room temperature with special emphasis on the HCN(v1,v2,v3) product stretching and bending vibrational excitations, and the results were compared with the experimental evidence, which presented discrepancies in the bending excitation. The available energy was mostly deposited as HCN(v) vibrational energy with the vibrational population inverted in the CH stretching mode and not inverted in the CN stretching and bending modes, thus simulating the experimental evidence. Other dynamics properties at room temperature were also analyzed; cold rotational energy distribution was found, associated with a linear and soft transition state, and backward scattering distribution was found, associated with a rebound mechanism.
Read full abstract