Lower Back Pain (LBP) is a global health issue, with increasing prevalence, partly attributed to vehicular vibrations experienced by motorcyclists. The L4 lumbar vertebra is responsible for greater mobility and flexibility of the body, but also is the most crucial body element affected by vehicular vibrations. Anthropometric properties, types of speed humps, and vehicle types are the critical variables that impact bone health during riding, need to be studied. To understand the potential zones of injury, computational simulation can be performed under the influence of vehicle vibrations while crossing different types of speed humps at varying speeds. In the present study, finite element method (FEM) is used to evaluate stress and deformation in the bone. The L4 cortical bone is modelled by considering the CT-Scan data and assumed to be homogeneous and isotropic material. Vibration data is collected using two vehicle types (Type I and Type II) on four different humps (Trapezoidal, Bitumen Semi-circular, Rubber Semi-circular, and Rumble strip). The bone's dynamic behavior is studied using FEM simulation, which involved static structural, modal and transient dynamic analyses. The findings from static analysis indicate that the most concentrated stress is located in the lower pedicle region and is an expected commonplace for injuries because of vibrations. In transient dynamic analysis, Type I vehicle showed a 25 % higher stress than Type II.
Read full abstract