This work is aimed to develop a heat transfer model of friction stir welding process and subsequently to utilize the same for transient thermal analysis under differential influence of process parameters. The heat generation is assumed due to friction and plastic deformation at the tool–workpiece interface. A contact state variable is defined to estimate the amount of heat generation due to plastic deformation. The symmetric heat flux at the interfaces of flat tool shoulder surface, tool pin side, and bottom surfaces acts as heat input to the system by neglecting the effect of transverse tool speed. The heat generation from both the side and bottom surfaces of pin plays a significant role for the development of the temperature. Thermal history of friction stir welded AA1100 and AA6061 is estimated by developed numerical model and is compared with experimental results under similar welding conditions, thus validating the developed model. The experiments reveal that the temperature distributions are not symmetric with respect to welding line and maximum temperature occurs behind the tool pin. With the addition of heat generation due to plastic deformation, the heat transfer model precisely predicts the maximum temperature and time–temperature profiles at different welding conditions.
Read full abstract