A cost-effective, easy-to-implement, and sustainable approach is needed to mitigate the production of alkaline leachate from steel slags that are reused or disposed in the environment. To address this issue, a humidification treatment process, which is operated by wetting a stack of steel slag using aqueous reagents and letting atmospheric CO2 to be passively diffused into the slag pores to induce slag carbonation reaction, was previously developed. In this study, we demonstrate that the leachate of raw steel slag can be recycled and used as a humidification reagent to substantially enhance the treatment efficiency as well as to enable operating the process with neither synthetic chemical consumption nor wastewater discharge. In a 24-h study, a 0.61-unit reduction in slag pH is achieved using a raw slag leachate as a reagent, which is substantially greater than a 0.28-unit reduction using deionized water. The net amount of CaCO3 produced during an extended humidification duration of 4weeks is increased by 2.7-fold when the leachate is used instead of deionized water. A series of systematically designed experiments demonstrates that the pH (11.0) and ionic strength (0.0048) are the two major characteristics of the raw slag leachate that contribute to the enhanced efficiency of humidification treatment. With further demonstration at larger scales in follow-up studies, the novel humidification process that utilizes the leachate generated on-site as a reagent is expected to be a feasible alternative for alkali waste treatment prior to its reuse or disposal.
Read full abstract