Urbanization growth has intensified the challenge of managing and treating increasing amounts of municipal solid waste (MSW). Landfills are commonly utilized for MSW disposal because of their low construction and operation costs. However, this practice produces huge volumes of landfill leachate, a highly polluting liquid rich in ammoniacal nitrogen (NH3-N), organic compounds, and various heavy metals, making it difficult to treat in conventional municipal wastewater treatment plants (WWTPs). In recent years, research has shown that microbial biofilms, developed on carriers of different materials and called “moving bed biofilm reactors” (MBBRs), may offer promising solutions for bioremediation. This study explored the biofilm development and the nitrification process of moving bed biofilms (MBBs) obtained from high ammonia-selected microbial communities. Using crystal violet staining and confocal laser-scanning microscopy, we followed the biofilm formation stages correlating nitrogen removal to metagenomic analyses. Our results indicate that MBBs unveiled a 10-fold more enhanced nitrification rate than the dispersed microbial community present in the native sludge of the Porto Sant’Elpidio (Italy) WWTP. Four bacterial families, Chitinophagaceae, Comamonadaceae, Sphingomonadaceae, and Nitrosomonadaceae, accumulate in structured biofilms and significantly contribute to the high ammonium removal rate of 80% in 24 h as estimated in leachate-containing wastewaters.
Read full abstract