We study three classes of perpetual option with multiple uncertainties and American-style exercise boundaries, using a partial differential equation-based approach. A combination of accurate numerical techniques and asymptotic analyses is implemented, with each approach informing and confirming the other. The first two examples we study are a put basket option and a call basket option, both involving two stochastic underlying assets, whilst the third is a (novel) class of real option linked to stochastic demand and costs (the details of the modelling for this are described in the paper). The Appendix addresses the issue of pricing American-style perpetual options involving (just) one stochastic underlying, but in which the volatility is also modelled stochastically, using the Heston (1993) framework.
Read full abstract