Physiological acclimation that alters enzyme activity can compensate for the effect of temperature on function and may be achieved by altering enzyme concentration. This study uses phylogenetic analyses to investigate the evolutionary history of and to test several hypotheses about acclimation responses among all the glycolytic enzymes. These hypotheses are that (1) acclimation increases enzyme concentration at lower temperatures to compensate for reduced activity; (2) equilibrium enzymes tend to show acclimation responses; and (3) acclimation responses are more common in species whose populations experience either large temporal or geographical temperature variations. Using maximal activities as indices of enzyme concentration, the presence of acclimation responses in all the glycolytic enzymes in the heart ventricle was determined for five species in the teleost genus Fundulus. Three of these species are distributed along the steep thermal cline of the North American Atlantic coast, and thus these species experience both seasonal and geographical variation in temperature. The other two species are found in the Gulf of Mexico and experience seasonal variation similar to the Atlantic species but no geographical variation in temperature. Two Atlantic coast species, Fundulus heteroclitus and Fundulus majalis, have unique derived acclimation responses. No derived acclimation responses occur in the Gulf species. A conserved response in hexokinase was observed within one subgenus comprising both Atlantic and Gulf species. In F. heteroclitus, enolase responded to acclimation, and in F majalis, aldolase, triphosphate isomerase, and lactate dehydrogenase had acclimation responses. These enzymes are equilibrium enzymes, and the concentrations of all of them increase at lower temperatures, which would compensate for the effect of temperature on enzyme activity. The compensatory changes all occur in the Atlantic species and may be a mechanism for species to expand their ranges. These data suggest that physiological acclimation is evolutionarily labile.
Read full abstract