Fluoride (F) and sulfur dioxide (SO2) contamination is recognized as a public health concern worldwide. Our previous research has shown that Co-exposure to F and SO2 can cause abnormal enamel mineralization. Ameloblastin (AMBN) plays a crucial role in the process of enamel mineralization. However, the process by which simultaneous exposure to F and SO2 influences enamel formation by regulating AMBN expression still needs to be understood. This study aimed to establish in vivo and in vitro models of F–SO2 Co-exposure and investigate the relationship between AMBN and abnormal enamel mineralization. By overexpressing/knocking out the Fibroblast Growth Factor 9 (FGF9) gene, we investigated the impact of FGF9-mediated Mitogen-Activated Protein Kinase (MAPK) signaling on AMBN synthesis to elucidate the mechanism underlying the induction of abnormal enamel mineralization by F–SO2 Co-exposure in rats. The results showed that F–SO2 exposure damaged the structure of rat enamel and ameloblasts. When exposed to F or SO2, gradual increases in the protein expression of FGF9 and phosphorylated p38 mitogen-activated protein kinase (p-P38) were observed. Conversely, the protein levels of AMBN, phosphorylated extracellular signal-regulated kinase (p-ERK), and phosphorylated c-Jun N-terminal kinase (p-JNK) were decreased. AMBN expression was significantly correlated with FGF9, p-ERK, and p-JNK expression in ameloblasts. Interestingly, FGF9 overexpression reduced the levels of p-ERK and p-JNK, worsening the inhibitory effect of F–SO2 on AMBN. Conversely, FGF9 knockout increased the phosphorylation of ERK and JNK, partially reversing the F–SO2-induced downregulation of AMBN. Taken together, these findings strongly demonstrate that FGF9 plays a critical role in F–SO2-induced abnormal enamel mineralization by regulating AMBN synthesis through the JNK and ERK pathways.
Read full abstract