Whole exome sequencing (WES) has been remarkably successful as both a diagnostic and novel gene discovery tool since its introduction to the clinical laboratory in 2011. Where traditional diagnostic methods have been uninformative in discovering the pathogenic etiology in patients, diagnostic exome sequencing (DES) has provided answers for roughly one-third of patients tested, thus contributing to the management of patients' overall healthcare. Single nucleotide variants are generally efficiently identified by DES in well-covered exonic regions. However, accurate mapping of insertions and deletions, especially those larger than 20 nucleotides, is challenging due to gapped alignment and paired- end sequence inference. We have customized and validated a robust exome analysis pipeline that accurately and efficiently calls insertions or deletions ranging from 20 to 200 base pairs from next generation sequencing data and contributes to one of the highest diagnostic yields reported for clinical exome analysis. Out of 284 positive/likely positive cases in the first 1000 unselected DES cases referred to Ambry Genetics, causative mutations in 9 (3.2%) were associated with insertions, deletions or indels between 20 and 200 bp in length. Our data highlight the importance of an optimized clinical exome workflow for the detection of longer insertions and deletions to improve clinical sensitivity and diagnostic yield.
Read full abstract