Casper, a type of transparent mutant-line zebrafish, was generated to overcome the opaque trunk of an adult zebrafish for tumor modeling to realize real-time visualization of transplanted cells in vivo. However, the molecular information at the metabolic level has not received much attention. Herein, a spatially resolved metabolomics method based on an airflow-assisted desorption electrospray ionization-mass spectrometry imaging (AFADESI-MSI) system for whole-body zebrafish was used to investigate small molecules and the distribution of adult casper (Mitfaw2/w2, roya9/a9) and the differences from wild-type zebrafish. Finally, the spatial distribution information of more than 1500 endogenous ions was obtained in positive and negative detection modes, and 186 metabolites belonging to a variety of structural categories were identified or annotated. Compared with wild-type samples, 85 variables, including 37 known metabolites, were screened out. In addition, the disordered metabolic pathways caused by the genetic mutation were excavated, involving downregulation of purine metabolism and arachidonic acid metabolism, upregulation of glycerophospholipid metabolism, and biosynthesis of unsaturated fatty acids. All these results were observed in the most intuitive way through MSI. This study revealed important metabolic characteristics of and perturbation in adult casper zebrafish, and provides indispensable fundamental knowledge for tumor research based on it.
Read full abstract