ConspectusSingle-Atom alloys (SAAs) are an emerging class of materials consisting of a coinage metal (Cu, Ag, and Au) doped, at the single-atom limit, with another metal. As catalysts, coinage metals are rarely very active on their own, but when they are, they exhibit high selectivity. On the other hand, transition metals are usually very active but not as selective. Incorporating transition metals (guest elements) into coinage metals (host material) is therefore appealing for combining the activity and selectivity of each constituent in a balanced way. Additionally, first-principles calculations have shown that single atoms embedded in the surface of a coinage metal can exhibit emergent properties. Here, we describe how computational studies based on density functional theory (DFT) and kinetic Monte Carlo (KMC) simulations, often undertaken in close collaboration with experimental research groups, have shaped, over the past decade, the way we understand SAA catalysis.This Account reviews our contributions in elucidating the stability of SAAs, their electronic structure, and the way adsorbates interact and react on SAA catalytic surfaces. By studying in detail the processes that affect the stability of the SAA phase, we have shown that out of several bimetallic combinations of coinage metals with prominent Pt-group metals only PtCu and PdCu are stable surface alloys under vacuum. However, more surface alloy structures are possible in the presence of adsorbates because the latter can stabilize, via strong binding, dopants in the surface of the material. More interestingly, a large number of these surface alloys are resistant to the aggregation of dopant atoms into clusters, thereby favoring the SAA structure. These major results from DFT calculations serve as a guide for experimentalists to explore new SAA catalysts. Further analysis has shown that SAAs have a unique electronic structure with a very sharp d-band feature close to the Fermi level, analogous to the electronic structure of molecular entities. This is one of the reasons that SAAs are particularly sought after: although they are metallic nanoparticles, they have properties akin to those of homogeneous catalysts. In this context, we have contributed extensive screening studies, focusing on molecular fragments of catalytic relevance on a range of SAAs, which have driven the identification of new catalysts. We have also explored the rich chemistry of two-adsorbate systems via kinetic modeling, demonstrating how a spectator species with greater affinity for the dopant can modulate the reactivity of the catalyst via the so-called (punctured) molecular cork effect.Since the first experimental characterization of SAAs about a decade ago, theoretical models have been able to support and explain various experimental observations. These models have served as benchmarks for assessing the predictive capability of the underlying theoretical methods. In turn, the predictions that have been delivered have guided and continue to guide the experimental research efforts in the field. These advancements show that the in silico design of new SAA catalysts is now within reach.
Read full abstract