The microhardness and abrasive wear resistance of cast Al-Si alloys after plasma-electrolytic oxidation (PEO) in a weakly alkaline basic electrolyte (3 g/L KOH + 2 g/L Na2SiO3), as well as with the addition of H2O2, were determined. X-ray analysis showed that the PEO layer comprises two oxide phases, namely α-Al2O3 and γ-Al2O3, as well as sillimanite -Al2O3 · SiO2 and a small percentage of mullite -3 Al2O3 · 2SiO2. Silicon is present in the structure of the oxide layer, and its percentage is greater than that of the alloys in their initial state. It has been shown that the characteristics of PEO layers on AK9 and AK12 silumins synthesized in an electrolyte of basic composition increase (microhardness up to 900–1000 HV and abrasive wear resistance by 14–57 times). The formation of PEO layers in the base electrolyte with the addition of 3 g/L of hydrogen peroxide intensifies the synthesis process and promotes the formation of high-temperature oxide phases (in particular, corundum). The abrasive wear resistance of both silumins with PEO layers synthesized in such an electrolyte increases by 30–70%.
Read full abstract