This paper presents the results of the recent development of the all-sky radiance assimilation system in the Korean Integrated Model (KIM). In the cycled analysis and forecast experiments, the increased coverage of radiance data in cloudy regions improved the quality of initial fields for mass variables, temperature and humidity. The experimental period covered the record-breaking heavy rainfall event on August 9, 2022. We examined the simulation accuracy of the western North Pacific subtropical high (WNPSH) in both clear- and all-sky experiments. In the clear-sky experiment, northward propagation of the WNPSH was restricted. A humid bias exists with clear-sky radiance assimilation over the WNPSH region. Since humid air is lighter than dry air, in this situation, the geopotential height (GPH) should be lower to achieve the same pressure, and a low-pressure bias occurs. All-sky radiance assimilation dries the moisture field, which helps elevate the GPH over the WNPSH region. The expansion of the WNPSH yielded a steeper confrontation in the air between the land and ocean around the southeastern sea of the Korean Peninsula to predict the strength of rainfall events more accurately. A more accurate simulation of the jet stream outlet was also demonstrated in an all-sky experiment. This study shows that the all-sky radiance assimilation can help to more accurately predict extreme rainfall events via proper simulations of large-scale fields.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access