The use of noncovalent intramolecular interactions constitutes a powerful design strategy for preparing π-conjugated polymers featuring high backbone coplanarities and thereby high crystallinities. Herein, we report the design and synthesis of an alkoxythiophene-flanked benzobisthiazole (BBTz) as a new building unit for π-conjugated polymers, which was subsequently copolymerized to give a simple BBTz-bithiophene copolymer with alkyl and alkoxy groups (PDBTz2). Owing to the S···O noncovalent intramolecular interactions between the alkoxy oxygens and thiazole sulfurs in BBTz, PDBTz2 showed greater coplanarity and crystallinity than its alkyl counterpart, PDBTz1. Interestingly, the backbone orientation was completely altered from the edge-on orientation observed for PDBTz1 to a face-on orientation for PDBTz2, which is preferable for organic photovoltaics (OPVs). In addition, the electron-donating nature of the alkoxy group increased the HOMO energy level of PDBTz2 compared to that of PDBTz1, which enabled photoinduced hole transfer from a nonfullerene acceptor, Y6, to the polymer. As a result, the short-circuit current density of an organic photovoltaic cell based on PDBTz2 and Y6 was significantly greater than that of a cell based on PDBTz1 and Y6. This study confirmed that alkoxythiophene-flanked BBTz is a promising building unit for high-performance π-conjugated polymers.
Read full abstract