In recent years, deep convolutional neural networks (DCNNs) have been widely used in the task of ship target detection in synthetic aperture radar (SAR) imagery. However, the vast storage and computational cost of DCNN limits its application to spaceborne or airborne onboard devices with limited resources. In this paper, a set of lightweight detection networks for SAR ship target detection are proposed. To obtain these lightweight networks, this paper designs a network structure optimization algorithm based on the multi-objective firefly algorithm (termed NOFA). In our design, the NOFA algorithm encodes the filters of a well-performing ship target detection network into a list of probabilities, which will determine whether the lightweight network will inherit the corresponding filter structure and parameters. After that, the multi-objective firefly optimization algorithm (MFA) continuously optimizes the probability list and finally outputs a set of lightweight network encodings that can meet the different needs of the trade-off between detection network precision and size. Finally, the network pruning technology transforms the encoding that meets the task requirements into a lightweight ship target detection network. The experiments on SSDD and SDCD datasets prove that the method proposed in this paper can provide more flexible and lighter detection networks than traditional detection networks.
Read full abstract