The ZrO2-Al2O3 exhibits distinct behavior compared to monolithic ceramics when exposed to stress. The compelling quality of this trait makes it well-suited for any demanding supporting application that necessitates resilience. However, under a thermal process, it might cause functional concerns such as cracking patterns, which pose a threat to the endurance of orthopedic implants. This issue has lately attracted medical scrutiny. Being a thermal process, fiber laser treatment of ZrO2-Al2O3 is more complex than monolithic ceramic because of its unique thermal characteristics and varied rates of absorption, which rely on the matrix and the reinforcement material. This research aims to scrutinize the divergent characteristics of ZrO2-Al2O3 in terms of crack behavior while treating it with the same laser fluence under auxiliary environments. It has been found that ZrO2-Al2O3 prone to form cracks when processed under high-temperature environments due to the development of stress during phase transformation because of prolonged exposure, as evidenced by the surface characterization results. Meanwhile, when it was processed at low-temperature environments like water and ice, the detrimental effect of laser fluence factor appeared to be meager by reducing the likelihood of phase transformation and crack quantity. With this, the research demonstrates a promising approach that effectively maintains the overall structural integrity of ZrO2-Al2O3 by impeding the progression of the cracks along with a smooth, flawless surface during laser processing.
Read full abstract