The avian infectious bronchitis virus (IBV) poses a significant economic threat to the global poultry industry. Although in recent years, the GVI-1 lineage of IBV has proliferated throughout China, there is still a lack of comprehensive studies regarding the pathogenicity of this lineage, particularly with respect to infections of the digestive tract and the antigenic characteristics of the S1 gene. In this study, we investigated the effects of infecting 14-day-old chicks with the HX strain of the GVI-1 lineage over a 14-d period postinfection. Assessment of the pathogenicity of the HX strain included clinical observations; monitoring of body weight, organ viral load, viral shedding, and gross anatomy; histopathological analysis, and bioinformatics-based antigenic characterization of the S1 protein. The findings revealed that compared with previously reported GVI-1 lineage strains, the HX strain is characterized by greater virulence, with infection leading to approximately 26% mortality and extensive severe organ damage, including that of the proventriculus and kidneys. Moreover, at 14 d postinfection, 80% of oral swabs and 100% of cloacal swabs from chickens infected with the HX strain tested positive, indicating a prolonged period of viral shedding relative to that previously reported for GVI-1 lineage strains. Bioinformatic analysis of B-cell epitopes on the S1 protein revealed 7 potential antigenic epitopes. Collectively, our findings in this study provide clear evidence to indicate that compared previously reported GVI-1 lineage strains, chicks infected with the IBV GVI-1 lineage strain HX are characterized by heightened rates of mortality, more pronounced organ damage, and an extended period of viral shedding. This comprehensive characterization highlights the pathogenic potential of the GVI-1 lineage and its capacity to induce severe kidney and proventriculus damage, thereby emphasizing the imperative of early initiated preventive measures. Furthermore, on the basis of our analysis of the antigenic properties of the S1 protein, we have identified 7 potential linear B-cell epitopes, which will provide valuable insights for the development of epitope-based vaccines.
Read full abstract