Aggregation-induced emission dyes (AIEs) have gained significant interest due to their unique optical properties. Upon aggregation, AIEs can exhibit remarkable fluorescence enhancement. These systems are ideal candidates for applications in bioimaging, such as image-guided drug delivery or surgery. Encapsulation of AIEs in polymeric nanocarriers can result in biocompatible and efficient nanosystems. Herein, we report the fabrication of novel nanoaggregates formulated by amino terpolymer and tetraphenylethylene (TPE) AIE in aqueous media. Poly(di(ethylene glycol) methyl ether methacrylate-co-2-(dimethylamino)ethylmethacrylate-co-oligoethylene glycol methyl ether methacrylate), P(DEGMA-co-DMAEMA-co-OEGMA) hydrophilic terpolymer was utilized for the complexation of the sodium tetraphenylethylene 4,4',4″,4‴-tetrasulfonate AIE dye. Fluorescence spectroscopy, physicochemical studies, and self-assembly in aqueous and fetal bovine serum media were carried out. The finely dispersed nanoparticles exhibited enhanced fluorescence compared to the pure dye. To investigate the role of tertiary amino groups in the aggregation phenomenon, the polymer was quaternized, and quaternized polymer nanocarriers were fabricated. The increase in fluorescence intensity indicated stronger interaction between the cationic polymer analog and the dye. A stronger interaction between the nanoparticles and fetal bovine serum was observed in the case of the quaternized polymer. Thus, P(DEGMA-co-DMAEMA-co-OEGMA) formulations are better candidates for bioimaging applications than the quaternized ones, presenting both aggregation-induced emission and less interaction with fetal bovine serum.
Read full abstract