In this work, attempts were made in order to characterize the change of aroma of alcoholic and non alcoholic beers during the aging process by use of a metal oxide semiconductor based electronic nose. The aged beer samples were statistically characterized in several classes. Linear techniques as principal component analysis (PCA) and Linear Discriminant Analaysis (LDA) were performed over the data that revealed non alcoholic beer classes are separated except a partial overlapping between zones corresponding to two specified classes of the aged beers. A clear discrimination was not found among the alcoholic beer classes showing the more stability of such type of beer compared with non alcoholic beer. In this research, to classify the classes, two types of artificial neural networks were used: Probabilistic Neural Networks (PNN) with Radial Basis Functions (RBF) and FeedForward Networks with Backpropagation (BP) learning method. The classification success was found to be 90% and 100% for alcoholic and non alcoholic beers, respectively. Application of PNN showed the classification accuracy of 83% and 100%, respectively for the aged alcoholic and non alcoholic beer classes as well. Finally, this study showed the capability of the electronic nose system for the evaluation of the aroma fingerprint changes in beer during the aging process.
Read full abstract