Jump testing performance and limb symmetry measures are important metrics for clinicians to monitor during rehabilitation after Anterior Cruciate Ligament (ACL) reconstruction, however they require hardware and software which is not commonly available in clinical practice. Video-based solutions may present a feasible alternative, but their veracity in classifying patients using limb-symmetry of 90% has not been established, nor have the clinimetric values for the performance measures been reported in this population. To describe the diagnostic accuracy (pass/fail using 90% LSI) and clinimetrics of an iPad-based app ("MyJump") compared to reference force plate analyses for limb symmetry, jump/hop height, contact time, flight time, and reactive strength index. Prospective cohort, diagnostic accuracy. Fifty-one consecutive patients recovering from ACL reconstruction undertaking routine independent clinical evaluation of their hop and jump performance were concurrently and independently examined using force plates and the MyJump app. Diagnostic accuracy of MyJump was compared to reference force plate analyses using a criterion of 90% limb symmetry. Diagnostic accuracy of the MyJump app was very good: positive predictive value for jump height was 0.83 and 1.0 for reactive strength index, and negative predictive value was 0.95 and 1.0 for the same metrics, respectively. Of the 131 classifications made using the MyJump app, there were five false positives and three false negatives - all of these were in classification of jump height with no misclassifications of RSI. Irrespective of jump type, the MyJump app displayed excellent reliability (ICC>0.95) for both height and reactive strength index. Minimum detectable changes were approximately 1cm for height, 0.1 for reactive strength index, 0.02s for contact time, and 0.3s for flight time. Where force plates are unavailable, the MyJump app is a valid and reliable substitute for criteria assessment of jump/hop height and reactive strength index in those recovering from ACL surgery using a 90% limb symmetry threshold. The minimum detectable changes vary by metric but are likely sufficiently accurate to detect clinical changes. Level 3.
Read full abstract