Printed phantoms hold great potential as a tool for examining task-based image quality of x-ray imaging systems. Their ability to produce complex shapes rendered in materials with adjustable attenuation coefficients allows a new level of flexibility in the design of tasks for the evaluation of physical imaging systems. We investigate performance in a fine "boundary discrimination" task in which fine features at the margin of a clearly visible "lesion" are used to classify the lesion as malignant or benign. These tasks are appealing because of their relevance to clinical tasks, and because they typically emphasize higher spatial frequencies relative to more common lesion detection tasks. A 3D printed phantom containing cylindrical shells of varying thickness was used to generate lesions profiles that differed in their edge profiles. This was intended to approximate lesions with indistinct margins that are clinically associated with malignancy. Wall thickness in the phantom ranged from 0.4mm to 0.8mm, which allows for task difficulty to be varied by choosing different thicknesses to represent malignant and benign lesions. The phantom was immersed in a tub filled with water and potassium phosphate to approximate the attenuating background, and imaged repeatedly on a benchtop cone-beam CT scanner. After preparing the image data (reconstruction, ROI Selection, sub-pixel registration), we find that the mean frequency of the lesion profile is 0.11 cyc/mm. The mean frequency of the lesion-difference profile, representative of the discrimination task, is approximately 6 times larger. Model observers show appropriate dose performance in these tasks as well.
Read full abstract