In this paper, a 1-bit modified full adder (MFA) cell is proposed. This eliminates the carry propagation during the addition by allowing errors in the carry bit. Using the proposed MFA, a 16-bit high speed error tolerant adder (HSETA) circuit is designed with conventional carry select adder (CSLA) structure for higher order bits and MFA based structure for lower order bits. The performance of HSETA is compared with existing adders in terms of accuracy, gate count, delay and power dissipation. The gate count of the HSETA is reduced by 23% and speed is improved by 43% compared to a conventional 16-bit adder structure. Further, implementation on FPGA Spartan 6 shows that HSETA uses 53% fewer LUT and 63% fewer slices compared to the conventional adder. Image blending application is used to evaluate the performance of the HSETA. In addition, to perform extensive error analysis, an analytical model is developed for HSETA and tested for varying bit widths and input probabilities. The analytical model is validated through simulation.
Read full abstract