With increasing density and heterogeneity in unlicensed wireless networks, traditional MAC protocols, such as Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) in Wi-Fi networks, are experiencing performance degradation. This is manifested in increased collisions and extended backoff times, leading to diminished spectrum efficiency and protocol coordination. Addressing these issues, this paper proposes a deep-learning-based MAC paradigm, dubbed DL-MAC, which leverages spectrum data readily available from energy detection modules in wireless devices to achieve the MAC functionalities of channel access, rate adaptation, and channel switch. First, we utilize DL-MAC to realize a joint design of channel access and rate adaptation. Subsequently, we integrate the capability of channel switching into DL-MAC, enhancing its functionality from single-channel to multi-channel operations. Specifically, the DL-MAC protocol incorporates a Deep Neural Network (DNN) for channel selection and a Recurrent Neural Network (RNN) for the joint design of channel access and rate adaptation. We conducted real-world data collection within the 2.4 GHz frequency band to validate the effectiveness of DL-MAC. Experimental results demonstrate that DL-MAC exhibits significantly superior performance compared to traditional algorithms in both single and multi-channel environments, and also outperforms single-function designs. Additionally, the performance of DL-MAC remains robust, unaffected by channel switch overheads within the evaluation range.
Read full abstract