Methods used in clinical practice to diagnose and monitor atherosclerosis present limitations. Imaging the mechanical properties of the arterial wall has demonstrated the potential evaluate plaque vulnerability and assess the risk for stroke. Adaptive Pulse Wave Imaging (PWI) is a non-invasive ultrasound imaging technique, which automatically detects points of spatial mechanical inhomogeneity along the imaged artery and provides piecewise stiffness characterization. The aims of the present study are to: 1) demonstrate the initial feasibility of adaptive PWI to image the mechanical properties of an atherosclerotic plaque 2) demonstrate the feasibility to combine adaptive PWI with vector Doppler in a single imaging modality in order to simultaneously obtain information plaque mechanical properties and plaque hemodynamics. The common carotid arteries of 1 healthy subject and 2 carotid artery disease patients were scanned in vivo. One of the patients underwent carotid endarterectomy and a plaque sample was retrieved. In this patient, a higher compliance value of the stenotic segment was estimated by Adaptive PWI as compared with the adjacent arterial wall, and the healthy carotid artery. This was corroborated by histological staining of the plaque sample, which revealed the presence of a large necrotic core and a thrombus, characteristics associated with reduced stiffness. Moreover, the same sequence demonstrated the feasibility to obtain both stiffness maps and vector flow information, showing promise in atherosclerosis diagnosis and patient care.
Read full abstract