In this paper, a novel fast attitude adaptive fault-tolerant control (FTC) scheme based on adaptive neural network and command filter is presented for the hypersonic reentry vehicles (HRV) with complex uncertainties which contain parameter uncertainties, un-modeled dynamics, actuator faults, and external disturbances. To improve the performance of closed-loop FTC, command filter and neural network are introduced to reconstruct system nonlinearities that are related to complex uncertainties. Compared with the FTC scheme with only neural network, the FTC scheme with command filter and neural network has fewer controller design parameters so that the computational complexity is decreased and the control efficiency is improved, which is of great significance for HRV. Then, the adaptive backstepping fault-tolerant controller based on command filter and neural network is designed, which can solve the complexity explosion problem in the standard backstepping control and the small uncertainty problem in the backstepping control only containing command filter. Moreover, to improve the approximation accuracy of the neural network-based universal approximator, an adaptive update law of neural network weights is designed by using the convex optimization technique. It is proved that the presented FTC scheme can ensure that the closed-loop control system is stable and the tracking errors are convergent. Finally, simulation results are carried out to verify the superiority and effectiveness of the presented FTC scheme.
Read full abstract