Scheduling with setup times and learning plays a crucial role in today's manufacturing and service environments where scheduling decisions are made with respect to multiple performance criteria rather than a single criterion. In this paper, we address a bicriteria single machine scheduling problem with job-dependent past-sequence-dependent setup times and job-dependent position-based learning effects. The setup time and actual processing time of a job are respectively unique functions of the actual processing times of the already processed jobs and the position of the job in a schedule. The objective is to derive the schedule that minimizes a linear composite function of a pair of performance criteria consisting of the makespan, the total completion time, the total lateness, the total absolute differences in completion times, and the sum of earliness, tardiness, and common due date penalty. We show that the resulting problems cannot be solved in polynomial time; thus, branch-and-bound (B&B) methods are proposed to obtain the optimal schedules. Our computational results demonstrate that the B&B can solve instances of various size problems with attractive times.
Read full abstract