The neurobiological underpinnings of attention deficit hyperactivity disorder (ADHD) are inconclusive. Activation abnormalities across brain regions in ADHD compared with healthy controls highlighted in task-based functional magnetic resonance imaging (fMRI) studies are heterogeneous. To identify a consistent pattern of neural dysfunction in ADHD, a meta-analysis of fMRI studies using Go/no-go, Stop and N-back tasks was undertaken. Several databases were searched using the key words: 'ADHD and fMRI' and 'ADHD and fMRI task'. In all, 20 studies met inclusion criteria comprising 334 patients with ADHD and 372 healthy controls and were split into N-back, Stop task and Go/no-go case-control groups. Using Signed Differential Mapping each batch was meta-analysed individually and meta-regression analyses were used to examine the effects of exposure to methylphenidate (MPH), length of MPH wash-out period, ADHD subtype, age and intelligence quotient (IQ) differences upon neural dysfunction in ADHD. Across all tasks less activity in frontal lobe regions compared with controls was detected. Less exposure to treatment and lengthier wash-out times resulted in less left medial frontal cortex activation in N-back and Go/no-go studies. Higher percentage of combined-type ADHD resulted in less superior and inferior frontal gyrus activation. Different IQ scores between groups were linked to reduced right caudate activity in ADHD. Consistent frontal deficits imply homogeneous cognitive strategies involved in ADHD behavioural control. Our findings suggest a link between fMRI results and the potentially normalizing effect of treatment and signify a need for segregated examination and contrast of differences in sample characteristics in future studies.
Read full abstract