Platelets play fundamental role in ensuring the hemostatic function in blood. In addition to this canonical function, the blood plates play angiotrophic, immunological, transport role, participate in the activation of plasma hemostasis, retraction of a blood clot, and can record circulating immune complexes. The review article presents current data on the structure and conjugation of molecular rearrangements of platelet ultrastructures associated with the functioning of an open canalicular platelet system, a dense tubular system, and a platelet cytoplasmic membrane. The main types of resting platelet metabolism, and the processes underlying the activation of platelets associated with the enhancement of carbohydrate and fatty acid catabolism are characterized, as well as some signaling pathways that regulate processes of induction of platelet aggregation. The data show the value of lipid components of activated platelet membranes, including phospholipids of various classes, glycolipids and cholesterol. The role of regulatory processes associated with the non-covalent modification of certain platelet proteins with fatty acids is reflected. Fundamental questions of platelet metabolism are relevant nowadays and require a combined approach of studying them, which can potentially solve many problems of clinical laboratory diagnostics, pathobiochemistry, and pharmacology. In preparing the review, we used sources from international and russian databases: Scopus, Web of Science, RSCI.
Read full abstract