This paper developed a comprehensive magnetic resonance imaging (MRI)-compatible electrophysiological (EP) acquisition system, which can acquire various physiological electrical signals, including electrocardiography (ECG), electromyography (EMG), electroencephalography (EEG) and electrocorticogram (ECoG), and EP recording combined with multimodal stimulation. The system is designed to be compatible with the 7-Tesla (7T) ultra-high field MRI environment, providing convenience for neuroscience and physiological research. To achieve MRI compatibility, the device uses magnetically compatible materials and shielding measures on the hardware and algorithm processing on the software side. Different filtering algorithms are adopted for different signals to suppress all kinds of interference in the MRI environment. The system can allow input signals up to ±0.225 V and channels up to 256. The equipment has been tested and proven to be able to collect a variety of physiological electrical signals effectively. When scanned under the condition of a 7T high-intensity magnetic field, the system does not generate obvious heating and can meet the safety requirements of MRI and EEG acquisition requirements. Moreover, an algorithm is designed and improved to efficiently and automatically remove the gradient artifact (GA) noise generated by MRI, which is a thousand-fold gradient artifact. Overall, this work proposes a complete, portable, MRI-compatible system that can collect a variety of physiological electrical signals and integrate more efficient GA removal algorithms.
Read full abstract