In spite of numerous experimental studies, it has, sofar, not been possible to link historic changes inforest growth to acid deposition at regional scales,partly due to difficulties in modeling the ecologicalcomplexity of forests. We analyzed radial incrementdata from increment cores from >31 000 spruce forestplots in southern Norway from 1954–1996. Using acombination of a bio-stratification model to controlconfounding factors, and a catchment model foracidification, we demonstrate for the first time aspatial and temporal co-variation between forestgrowth and both nitrogen deposition and acidification,as indicated by acidity critical loads exceedances.Increases in growth during the 1960–1970s, followed bya subsequent decline in the 1980–1990s, were bestexplained by combined actions of acidification,nitrogen deposition and climatic stress on forestgrowth. While forest conditions varyprimarily with natural growing conditions, the resultssuggest that boreal forests are sensitive to moderatelevels of nitrogen and sulphur deposition whereacidity critical loads are low, and that effects maybe observed over relatively short time scales.
Read full abstract