ABSTRACTThe process of selecting representative samples is crucial for establishing an accurate calibration model. To enhance the representativeness of the samples, a method for sample selection, utilizing the degree of anomaly as the evaluation criterion, is proposed. Initially, anomaly scores corresponding to various detection methods are obtained to ensure a comprehensive evaluation. These scores are then normalized by the confidence lower limit to establish a consistent scoring criterion. Subsequently, the weights of different detection methods are determined through eigenvector centrality analysis of a graph, where the methods serve as nodes and the similarity acts as weighted edges. Finally, the comprehensive anomaly scores are computed as the sum of weighted scores and are subsequently sorted. Representative samples are selected using a uniformly spaced sampling approach, with the spacing determined by a predefined and provided sample number. The efficacy of the method is validated across different sample sets.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
91 Articles
Published in last 50 years
Articles published on Accuracy Of Calibration Models
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
88 Search results
Sort by Recency