Hami melons are tasty and nutritive, but susceptibility to the fungus Alternaria alternata is one of the main problems leading to the postharvest loss of this fruit. The purpose of this research was to evaluate the effectiveness of nitric oxide (NO) on regulation of ethylene biosynthesis as well as signal transduction against black spot disease caused by A. alternata in the Hami melon. Nitric oxide reduced the growth of lesion diameter and lesion depth in melons inoculated with A. alternata. Ethylene production was significantly inhibited by NO, which was supported by the reduction of 1-aminocyclopropene-1-carboxylate (ACC) synthase (ACS) activity and the deferment of ACC content and ACC oxidase (ACO) activity. Nitric oxide treatment also significantly regulated the expression of four ethylene biosynthesis genes CmACS1, CmACS2, CmACO1, and CmACO2, and eight signal ethylene transduction genes CmETR1, CmETR2, CmCTR1, CmEIN2, CmEIL1, CmEBF1, CmERF1B and CmERF2. The modes of NO regulating these genes can be divided into five categories: promotion (CmEIN2, and CmEIL1), delay (CmACS1, CmETR2, CmCTR1 and CmERF2), up-regulation (CmETR1, CmEBF1 and CmERF1B), down-regulation (CmACS2), and first inhibition and then induction (CmACO1 and CmACO2). The NO treatment enhanced the postharvest disease resistance of Hami melon attacked by A. alternata, possibly by postponing ethylene biosynthesis and signal transduction. © 2021 Society of Chemical Industry.
Read full abstract