Polymethylmethacrylate (PMMA) has been the most-widely used denture base material in prosthetic dentistry for the last 80 years. It is still one of the best alternatives when new methods are inapplicable. Due to the lack of some physical inadequacies occurring during cyclic use and accidental situations, various reinforcement strategies such as using nanoparticles, wires, fibers, and meshes have been investigated and reported. In this study, it was aimed to conduct a comparative investigation of the effect of fiber additives with different characteristics on the flexural properties of heat-cured PMMA denture base resins. Glass fibers (GFs), polypropylene fibers (PPFs), and carbon fibers (CFs) having 3, 6, and 12 mm lengths and 0.25, 0.50, and 1.0% concentrations (v/v) were used for the reinforcement of PMMA denture base resins. The flexural properties (flexural strength, flexural modulus, and maximum deformation) were determined using a three-point bending test, and three-way ANOVA analyses with Bonferroni corrections were performed on the test results. The morphologies of the fracture surfaces were analyzed using scanning electron microscopy. All three fibers exhibited reinforcement in the flexural strength (p < 0.001) and flexural modulus (p < 0.001) regardless of their length and concentration. The group with 1.0% 12 mm CF-reinforced PMMA exhibited the greatest flexural strength (94.8 ± 8.8 MPa), and that with 1.0% 3 mm GFs displayed the lowest flexural strength (66.9 ± 10.4 MPa) among the fiber-reinforced groups. The greatest value of the flexural modulus was displayed by the 1.0% 3 mm CF-reinforced resin (3288.3 ± 402.1 MPa). Although the CF-reinforced groups exhibited better flexural properties, CFs are not favorable for use as reinforcement in practice due to the dark gray discoloration of the denture base resin. It was concluded that PPF is a promising material for the reinforcement of heat-cured PMMA denture base resins.
Read full abstract