In this paper, the possibility of using a multiple ionization mode approach of GC/MS was developed for the simultaneous hair testing of common drugs of abuse in Asia, including amphetamines (amphetamine, AP; methamphetamine, MA; methylenedioxy amphetamine, MDA; methylenedioxy methamphetamine, MDMA; methylenedioxy ethylamphetamine, MDEA), ketamine (ketamine, K; norketamine, NK), and opiates (morphine, MOR; codeine, COD; 6-acetylmorphine, 6-AM). This strategy integrated the characteristics of gas chromatography–mass spectrometry (GC–MS) using electron impact ionization (EI) and negative chemical ionization (NCI). Hair samples (25 mg) were washed, cut, and incubated overnight at 25 °C in methanol–trifluoroacetic acid (methanol–TFA). The samples were extracted by solid phase extraction (SPE) procedure, derivatized using heptafluorobutyric acid anhydride (HFBA) at 70 °C for 30 min, and the derivatives analyzed by GC–MS with EI and NCI. The limit of detection (LOD) with GC/EI-MS analysis obtained were 0.03 ng/mg for AP, MA, MDA, MDMA, and MDEA; 0.05 ng/mg for K, NK, MOR, and COD; and 0.08 ng/mg for 6-AM. The LOD of GC/NCI-MS analysis was much lower than GC/EI-MS analysis. The LOD obtained were 30 pg/mg for AP and MDA in GC/EI-MS and 2 pg/mg in GC/NCI-MS. Therefore, the sensitivity of AP and MDA in GC/NCI-MS was improved from 15-fold compared with EI. The sensitivity of AP, MA, MDA, MDMA, MDEA, MOR, and COD was improved from 15- to 60-fold compared with EI. In addition, the sensitivity of 6-AM increased 8-fold through selection of m/ z 197 for the quantitative ion. Moreover, K and NK could dramatically improve their sensitivity at 200- and 2000-fold. The integration of GC/EI-MS and GC/NCI-MS can obtain the high sensitivity and complementary results of drugs of abuse in hair. Six hair samples from known drug abusers were examined by this new strategy. These results show that integrating the characteristics of GC/EI-MS and GC/NCI-MS were not only enhancement of the sensitivity but also avoid wrong results and wrong interpretations of correct results.
Read full abstract