Wall-climbing robots have broad application potential in industrial equipment inspection, chemical storage tank maintenance, and high-altitude operations. However, their practical implementation is challenged by the robots’ adhesion requirements in complex wall environments. This study uses a systematic methodology integrating computational simulation and experimental validation to design and optimize a magnetic adsorption system for wall-climbing robots. Firstly, an adjustable suspended magnetic adhesion unit is designed to achieve intelligent control of a wall-climbing robot’s adhesion force on a wall surface. The Maxwell software (AnsysEM21.1) is used to simulate and analyze the critical parameters of the magnetic adsorption unit, including the thickness of the magnet and yoke, as well as the distance and angle between the magnet and the wall surface. Then, a magnetic wheel is designed for the wall-climbing robot based on the optimization of the structure and parameters of the magnetic adhesion unit. The absorption and demagnetization of the magnetic wheels are achieved by rotating the magnetic absorption unit. Subsequently, the simulation results are verified on the experimental platform, and adhesion performance tests are conducted on both standard flat surfaces and inclined walls. The results show that the optimized single magnetic adhesion unit gives the wall-climbing robot an adhesion force of 2767 N under normal working conditions, with a simulation experiment error margin as low as 8.3%. These results both provide theoretical guidance and highlight practical methodologies for developing high-performance magnetic adsorption systems in complex operational environments.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Journal finder
AI-powered journal recommender
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
371 Articles
Published in last 50 years
Articles published on Absorption Unit
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
368 Search results
Sort by Recency