Abstract Various aspects of infrared radiative transfer through clouds are investigated. First, three solutions to the IR radiative transfer equation are presented and assessed, each corresponding to a different approximation for the Planck function. It is shown that the differences in results between solutions with linear and exponential dependence of the Planck source function are small for typical vertical resolutions in climate models. Second, a new perturbation-based approach to solving the IR radiative transfer equation with the inclusion of cloud scattering is presented. This scheme follows the standard perturbation method, and allows one to identify the zeroth-order equation with the absorption approximation and the first-order equation as including IR scattering effects. This enables one solution to accurately treat cloudy layers in which cloud scattering is included, and allows for an improved and consistent treatment of absorbing aerosol layers in the absence of cloud by using the zeroth-order ...
Read full abstract