Cryptocaryon irritans infestations on marine teleosts are a considerable burden on factory mariculture. Ultraviolet (UV) light can kill C. irritans under laboratory conditions. However, a rational method for using UV in factory aquaculture to control cryptocaryoniasis has not been developed. This study focused on evaluating the killing effect of UV on protomonts and tomonts of C. irritans and established an automatic UV parasiticide device for the prevention and control of cryptocaryoniasis in marine teleosts. The survival rate of protomonts and tomonts decreased with an increase in the UV irradiation dose. All the protomonts and tomonts died within 14 and 24 min, respectively. The lowest UV lethal doses of protomonts and tomonts of C. irritans were 2.0 × 106 and 3.5 × 106 μWs cm-2 , respectively. Exposure of protomonts and tomonts to lethal doses of UV radiation led to shrinkage and severe dissolution of the protoplasm, causing abnormal development of cells. The survival rate of artificially infected Larimichthys crocea (treatment group, group A) was 83.33% at the end of the test (day 14) after disinfection using the automatic UV parasiticide device, whereas that of the control group (group C) was 90.00% (p < 0.05). However, all artificially infected L. crocea without disinfection using the automatic UV parasiticide device (untreated group, group B) died on day 8. The automation of traditional physical methods conforms to the sustainable development of aquaculture and provides a theoretical reference for the prevention and control of cryptocaryoniasis in mariculture. © 2022 Society of Chemical Industry.
Read full abstract