The decreased osteogenic differentiation ability of mesenchymal stem cells (MSCs) is one of the important reasons for SOP. Inhibition of Wnt signaling in MSCs is closely related to SOP. Microtubule actin crosslinking factor 1 (MACF1) is an important regulator in Wnt/β-catenin signal transduction. However, whether the specific expression of MACF1 in MSC regulates SOP and its mechanism remains unclear. We established MSC-specific Prrx1 (Prx1) promoter-driven MACF1 conditional knock-in (MACF-KI) mice, naturally aged male mice, and ovariectomized female mice models. Micro-CT, H&E staining, double calcein labeling, and the three-point bending test were used to explore the effects of MACF1 on bone formation and bone microstructure in the SOP mice model. Bioinformatics analysis, ChIP-PCR, qPCR, and ALP staining were used to explore the effects and mechanisms of MACF1 on MSCs' osteogenic differentiation. Microarray analysis revealed that the expression of MACF1 and positive regulators of the Wnt pathway (such as TCF4, β-catenin, Dvl) was decreased in human MSCs (hMSCs) isolated from aged osteoporotic than non-osteoporotic patients. The ALP activity and osteogenesis marker genes (Alp, Runx2, and Bglap) expression in mouse MSCs was downregulated during aging. Furthermore, Micro-CT analysis of the femur from 2-month-old MSC-specific Prrx1 (Prx1) promoter-driven MACF1 conditional knock-in (MACF-cKI) mice showed no significant trabecular bone changes compared to wild-type littermate controls, whereas 18- and 21-month-old MACF1 c-KI animals displayed increased bone mineral densities (BMD), improved bone microstructure, and increased maximum compression stress. In addition, the ovariectomy (OVX)-induced osteoporosis model of MACF1 c-KI mice had significantly higher trabecular volume and number, and increased bone formation rate than that in control mice. Mechanistically, ChIP-PCR showed that TCF4 could bind to the promoter region of the host gene miR-335-5p. Moreover, MACF1 could regulate the expression of miR-335-5p by TCF4 during the osteogenic differentiation of MSCs. These data indicate that MACF1 positively regulates MSCs osteogenesis and bone formation through the TCF4/miR-335-5p signaling pathway in SOP, suggesting that targeting MACF1 may be a novel therapeutic approach against SOP. MACF1, an important switch in the Wnt signaling pathway, can alleviate SOP through the TCF4/miR-335-5p signaling pathway in mice model. It might act as a therapeutic target for the treatment of SOP to improve bone function.
Read full abstract