Colitis-associated cancer (CAC) is an aggressive subtype of colorectal cancer that can develop in ulcerative colitis patients and is driven by chronic inflammation and oxidative stress. Current chemotherapy for CAC, based on 5-fluorouracil and oxalipltin, is not fully effective and displays severe side effects, prompting the search for alternative therapies. Dimethylfumarate (DMF), an activator of the nuclear factor erythroid 2–related factor 2 (NRF2), is a potent antioxidant and immunomodelatrory drug used in the treatment of multiple sclerosis and showed a strong anti-inflammatory effect on experimental colitis. Here, we investigated the chemotherapeutic effect of DMF on an experimental model of CAC. Male NMRI mice were given two subcutaneous injections of 1,2 Dimethylhydrazine (DMH), followed by three cycles of dextran sulfate sodium (DSS). Low-dose (DMF30) and high-dose of DMF (DMF100) or oxaliplatin (OXA) were administered from the 8th to 12th week of the experiment, and then the colon tissues were analysed histologically and biochemically. DMH/DSS induced dysplastic aberrant crypt foci (ACF), oxidative stress, and severe colonic inflammation, with a predominance of pro-inflammatory M1 macrophages. As OXA, DMF30 reduced ACF multiplicity and crypt dysplasia, but further restored redox status, and reduced colitis severity by shifting macrophages towards the anti-inflammatory M2 phenotype. Surprisingly, DMF100 exacerbated ACF multiplicity, oxidative stress, and colon inflammation, likely through NRF2 and p53 overexpression in colonic inflammatory cells. DMF had a dual effect on CAC. At low dose, DMF is chemotherapeutic and acts as an antioxidant and immunomodulator, whereas at high dose, DMF is pro-oxidant and exacerbates colitis-associated cancer.
Read full abstract