BackgroundStroke is the second leading cause of death across the globe. Early screening and risk detection could provide early intervention and possibly prevent its incidence. Imaging modalities, including 1D-Transcranial Doppler Ultrasound (1D-TCD) or Transcranial Color-code sonography (TCCS), could only provide low spatial resolution or 2D image information, respectively. Notably, 3D imaging modalities including CT have high radiation exposure, whereas MRI is expensive and cannot be adopted in patients with implanted devices. This study proposes an alternative imaging solution for reconstructing 3D Doppler ultrasound geared towards providing a screening tool for the 3D vessel structure of the brain. MethodsThe system comprises an ultrasound phased array attached to a servo motor, which can rotate 180˚ at a speed of 2˚/s. We extracted the color Doppler ROI from the image before reconstructing it into a 3D view using a customized pixel-based algorithm. Different vascular diameters, flow velocity, and depth were tested using a vascular phantom with a pumped flow to confirm the system for imaging blood flow. These variables were set to mimic the vessel diameter, flow speed, and depth of the Circle of Willis (CoW) during a transcranial screening. Results and conclusionsThe lower values of absolute error and ratio were found in the larger vascular channels, and vessel diameter overrepresentation was observed. Under different flow velocities, such diameter overrepresentation in the reconstructed flow did not change much; however, it did change with different depths. Meanwhile, the setting of the velocity scale and the color gain affected the dimension of reconstructed objectives. Moreover, we presented a 3D image of CoW from a subject to demonstrate its potential. The findings of this work can provide a good reference for further studies on the reconstruction of the CoW or other blood vessels using Doppler imaging.
Read full abstract