Considering the similarity between the invasion processes of cancer cells and embryo implantation, three-dimensional culture models used to study cancer cell invasion can also be applied to embryo implantation studies. In our study, endometrial epithelial cell line (RL95-2) and spheroid-forming trophoblast-like choriocarcinoma cell line (JAR) were cultured on three different biocompatible tissue scaffolds: bacterial cellulose, collagen foam and collagen fibre. These scaffolds are frequently used in cancer cell metastasis and invasion studies, A three-dimensional endometrium-like culture system was established to quantitatively investigate the role of E-cadherin, N-cadherin, Vimentin, α-smooth muscle actin and Syndecan-1 proteins in the type 1 epithelial mesenchymal transition mechanism observed during the invasion step of the implantation process. Based on the findings from the three-dimensional cell culture, the bacterial cellulose scaffold promoted the proliferation of RL95-2 cells and delayed JAR spheroid formation. The collagen foam scaffold favored the proliferation of RL95-2 cells and accelerated JAR spheroid formation. The collagen fibre scaffold is important for supporting cell topography and, when combined with collagen foam, may offer a potential solution for investigating 3D endometrium-like culture systems. Immunocytochemical and immunofluorescence analyses showed that scaffolds modulate the invasion process by affecting the expression of epithelial mesenchymal transition proteins in cells. The findings suggest that different tissue scaffolds can produce varying effects in endometrium-like culture systems, and combinations of these materials may yield more effective results in future studies. This research represents a critical step in studying cell behavior in 3D culture systems and elucidates the mechanism of endometrial invasion.
Read full abstract