The effects of enzymatic dephosphorylation on neurofilament interaction with two calcium-binding proteins, calpain and calmodulin, were examined. Dephosphorylation increased the rate and extent of 200-kDa neurofilament protein proteolysis by calpain. In contrast, dephosphorylation of the 160-kDa neurofilament protein did not alter the rate or extent of calpain proteolysis. However, the calpain-induced breakdown products of native and dephosphorylated 160-kDa neurofilament protein were different. Dephosphorylation did not change the proteolytic rate, extent, or breakdown products of the 68-kDa neurofilament protein. Calmodulin binding to the purified individual 160- and 200-kDa neurofilament proteins was increased following dephosphorylation. These results suggest that phosphorylation may regulate the metabolism and function of neurofilaments by modulating interactions with the calcium-activated proteins calpain and calmodulin.
Read full abstract