The use of image-derived arterial input functions (IDAIF) for the dynamic quantification of bone metabolism using 18F-fluoride positron emission tomography 18F-PET is an attractive alternative to direct arterial blood sampling. (a) To validate a method for obtaining the IDAIF by imaging the femoral artery against a method for deriving the IDAIF at the aorta that was previously validated against direct arterial sampling. (b) To compare the accuracy of bone plasma clearance measurements (Ki) at the total hip site obtained using the femoral artery IDAIF against Ki values at the same site obtained using the aorta IDAIF. Twelve healthy postmenopausal women with a mean age of 62.6 years (range, 52.3-70.6 years) had 60-min dynamic 18F-PET scans of the lumbar spine and proximal femur 2 weeks apart. The femoral artery IDAIF was obtained from the proximal femur scan using four different algorithms: (a) fixed partial volume correction (PVC) method; (b) variable PVC method; (c) Chen method; and (d) Cook-Lodge method. The aorta IDAIF was obtained from the lumbar spine scan using a previously validated method and the respective Ki values in the hip were used to assess the performance of each of the femoral artery algorithms. When the femoral artery IDAIF methods were compared with the aorta IDAIF in terms of the area under the curve AUC values calculated in 4-min time intervals over 0-60 min, the absolute root mean square errors were: (a) fixed PVC, 0.52; (b) variable PVC, 0.54; (c) Chen, 0.72; and (d) Cook-Lodge, 0.49 in MBq s/ml. There were small, but statistically significant differences, in the Ki values found by all four femoral artery IDAIF methods when compared with the figures obtained using the aorta IDAIF. Bland-Altman plots of Ki values showed the best agreement for the fixed PVC method with a standard deviation of 0.0020 ml/min/ml, followed by variable PVC, Cook-Lodge and Chen method with standard deviations of 0.0022, 0.0024 and 0.0042 ml/min/ml, respectively. We have demonstrated that it is possible to measure regional bone turnover at the hip without the need to perform direct arterial sampling to acquire the arterial input function (AIF). The differences in the Ki values obtained at the hip by using aorta IDAIF and any of the four image-based AIF methods at the femoral artery were small and clinically insignificant. The performance of fixed PVC, variable PVC and Cook-Lodge method was similar although the latter was less robust than the other two methods.
Read full abstract