Year Year arrow
arrow-active-down-0
Publisher Publisher arrow
arrow-active-down-1
Journal Journal arrow
arrow-active-down-2
Institution
1
Institution arrow
arrow-active-down-3
Institution Country Institution Country arrow
arrow-active-down-4
Publication Type Publication Type arrow
arrow-active-down-5
Field Of Study Field Of Study arrow
arrow-active-down-6
Topics Topics arrow
arrow-active-down-7
Open Access Open Access arrow
arrow-active-down-8
Language Language arrow
arrow-active-down-9
Filter Icon Filter 1
Year Year arrow
arrow-active-down-0
Publisher Publisher arrow
arrow-active-down-1
Journal Journal arrow
arrow-active-down-2
Institution
1
Institution arrow
arrow-active-down-3
Institution Country Institution Country arrow
arrow-active-down-4
Publication Type Publication Type arrow
arrow-active-down-5
Field Of Study Field Of Study arrow
arrow-active-down-6
Topics Topics arrow
arrow-active-down-7
Open Access Open Access arrow
arrow-active-down-8
Language Language arrow
arrow-active-down-9
Filter Icon Filter 1
Export
Sort by: Relevance
Effect of Continuous Ingestion of Bifidobacteria and Inulin on Reducing Body Fat: A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Comparison Study.

Bifidobacterium animalis subsp. lactis GCL2505 has been shown to have several positive health effects, including improved defecation frequency and reduced visceral fat. It is known that combined intake of GCL2505 and inulin increases the total number of bifidobacteria compared with ingestion of GCL2505 alone. This randomized, double-blind, placebo-controlled, parallel-group study was conducted to confirm that consumption of GCL2505 and inulin reduces abdominal fat (n = 120). Participants consumed a test beverage containing 1 × 1010 colony-forming units of GCL2505 per 100 g and 2.0 g of inulin per 100 g for 12 weeks. A change in the visceral fat area (VFA) was set as the primary endpoint. There were significant reductions in VFA and total fat area. The intervention significantly increased the total number of bifidobacteria and affected the levels of several lipid markers. Regression analysis of bifidobacteria and measured parameters showed that total bifidobacteria correlated with VFA and body mass index (BMI), while endogenous bifidobacteria and Bifidobacterium animalis subsp. lactis correlated only with BMI, suggesting that increases in both contributed to the decrease in VFA. These results suggest that combined intake of GCL2505 and inulin improves the intestinal environment and reduces abdominal fat in association with the SCFA-mediated pathway.

Read full abstract
Open Access Icon Open Access
Effect of Continuous Ingestion of Bifidobacteria and Dietary Fiber on Improvement in Cognitive Function: A Randomized, Double-Blind, Placebo-Controlled Trial.

Bifidobacterium animalis subsp. lactis GCL2505 has been shown to have some positive effects on health, including improved defecation frequency and reduced visceral fat. These effects are thought to be due to GCL2505's unique ability to reach the intestine in a viable form and proliferate after a single intake. This leads to an increased number of intestinal bifidobacteria. This randomized, double-blind, placebo-controlled, parallel-group study was conducted to confirm that intake of GCL2505 and inulin (a prebiotic) improve cognitive function (n = 80). Participants consumed test drinks containing 1 × 1010 colony-forming units of GCL2505 per 100 g and 2.0 g of inulin per 100 g for 12 weeks. The change in cognitive function assessment scores was set as the primary endpoint. There were significant improvements in scores in the neurocognitive index domain, which is an assessment of overall cognitive function, in addition to overall attention, cognitive flexibility, and executive function domains. The intervention significantly increased the number of fecal bifidobacteria and affected the levels of several inflammatory markers. These results suggest that intake of GCL2505 and inulin improves cognitive function by improving the intestinal environment and alleviating inflammation.

Read full abstract
Open Access Icon Open Access
Analysis of the Effects of Known Sleep-Support Supplements in Relation to Life Habits, Sleep Conditions, and Sleep Problems.

Sleep is a crucial component of health, and insomnia is among the most common and vexing of life-habit-related disorders. While dietary sleep-support supplements can improve sleep, choosing an effective dietary supplement can be challenging for users due to the wide variety of options available and the varying effects experienced by different individuals. In this study, to identify new criteria for estimating the effects of dietary supplements, we examined the relationships among the dietary supplements, the pre-conditions (PCs; defined as the life habits and sleep conditions before supplementation), and the sleep problems of subjects before supplementation. An open, randomized, cross-over intervention trial enrolling 160 subjects was conducted to test the efficacy of each dietary supplement (Analysis 1) and the relationships among dietary supplements, the PCs, and sleep problems (Analysis 2). To this end, l-theanine (200 mg/day), γ-aminobutyric acid (GABA) (111.1 mg/day), Apocynum venetum leaf extract (AVLE) (50 mg/day), and l-serine (300 mg/day) were administered to subjects. Before the first intervention period, life habits and sleep conditions were surveyed to identify each subject's PCs. For each combination of supplements and sleep problems, PCs were compared between subjects whose sleep problems were improved and subjects whose sleep problems were not improved via supplementation. All the tested supplements were found to ameliorate sleep problems significantly (Analysis 1). In Analysis 2, the PCs specific to improved subjects were found to differ depending on the dietary supplements and sleep problems. In addition, subjects who consumed dairy products often showed improvement in their sleep problems with all the tested supplements. This study suggests the possibility of personalizing sleep-support supplementation based on personal life habits, sleep conditions, and sleep problems, in addition to the known efficacy of dietary supplements.

Read full abstract
Open Access Icon Open Access
GroEL Secreted from Bacillus subtilis Natto Exerted a Crucial Role for Anti-Inflammatory IL-10 Induction in THP-1 Cells.

Although diverse immunomodulatory reactions of probiotic bacteria have been reported, this effect via Bacillus subtilis natto remains unclear, despite its long consumption history in Japan and usage in Natto production. Hence, we performed a comparative analysis of the immunomodulatory activities of 23 types of B. subtilis natto isolated from Natto products to elucidate the key active components. Among the isolated 23 strains, the supernatant from B. subtilis strain 1 fermented medium showed the highest induction of anti-inflammatory IL-10 and pro-inflammatory IL-12 in THP-1 dendritic cells (THP-1 DC) after co-incubation. We isolated the active component from strain 1 cultured medium and employed DEAE-Sepharose chromatography with 0.5 M NaCl elution for fractionation. IL-10-inducing activity was specific to an approximately 60 kDa protein, GroEL, which was identified as a chaperone protein and was significantly reduced with anti-GroEL antibody. Differential expression analysis of strains 1 and 15, which had the lowest cytokine-producing activity, showed a higher expression of various genes involved in chaperones and sporulation in strain 1. Furthermore, GroEL production was induced in spore-forming medium. The present study is the first to show that the chaperone protein GroEL, secreted by B. subtilis natto during sporulation, plays a crucial role in IL-10 and IL-12 production in THP-1 DC.

Read full abstract
Open Access Icon Open Access
Population-level Metagenomics Uncovers Distinct Effects of Multiple Medications on the Human Gut Microbiome

Background & aimsMedication is a major determinant of human gut microbiome structure, and its overuse increases the risks of morbidity and mortality. However, effects of certain commonly prescribed drugs and multiple medications on the gut microbiome are still underinvestigated. MethodsWe performed shotgun metagenomic analysis of fecal samples from 4198 individuals in the Japanese 4D (Disease, Drug, Diet, Daily life) microbiome project. A total of 759 drugs were profiled, and other metadata, such as anthropometrics, lifestyles, diets, physical activities, and diseases, were prospectively collected. Second fecal samples were collected from 243 individuals to assess the effects of drug initiation and discontinuation on the microbiome. ResultsWe found that numerous drugs across different treatment categories influence the microbiome; more than 70% of the drugs we profiled had not been examined before. Individuals exposed to multiple drugs, polypharmacy, showed distinct gut microbiome structures harboring significantly more abundant upper gastrointestinal species and several nosocomial pathobionts due to additive drug effects. Polypharmacy was also associated with microbial functions, including the reduction of short-chain fatty acid metabolism and increased bacterial stress responses. Even nonantibiotic drugs were significantly correlated with an increased antimicrobial resistance potential through polypharmacy. Notably, a 2-time points dataset revealed the alteration and recovery of the microbiome in response to drug initiation and cessation, corroborating the observed drug-microbe associations in the cross-sectional cohort. ConclusionOur large-scale metagenomics unravels extensive and disruptive impacts of individual and multiple drug exposures on the human gut microbiome, providing a drug-microbe catalog as a basis for a deeper understanding of the role of the microbiome in drug efficacy and toxicity.

Read full abstract
Oral care tablet containing kiwifruit powder affects tongue coating microbiome.

ObjectivesTongue coating, a kind of biofilm formed on the tongue dorsum, is the cause of various clinical conditions, such as oral halitosis and periodontal diseases, because Fusobacterium nucleatum acts as a bridge between other oral bacteria and periodontopathogenic bacteria in biofilm formation. Our previous clinical study revealed that taking oral care tablets containing kiwifruit powder significantly reduced not only tongue‐coating index and volatile sulfur compounds but also total bacteria and F. nucleatum in tongue coating. In this study, we analyzed the microbiome of tongue coating samples obtained before and after oral care tablets intake to clarify whether this tablet is a useful tool for daily tongue care.MethodsThirty‐two healthy young adults were enrolled, and a crossover clinical trial was conducted. We instructed subjects to remove tongue coating by tongue brush for intervention I, to keep the oral care tablet containing kiwifruit powder on the tongue dorsum and to let it dissolve naturally for intervention II. Microbial DNA was isolated from the collected tongue coating samples in each subject, then 16S rRNA next‐generation sequencing, operational taxonomic unit clustering, and statistical analysis were performed.ResultsThe microbiome analysis revealed that the oral care tablet in intervention II prompted a significant change in the tongue microbiota composition, a significant reduction in the relative abundance of Prevotella and Porphyromonas, and an increase in Firmicutes/Bacteroidetes ratio when compared to that in intervention I.ConclusionThese results suggested that the oral care tablet might contribute to the improvement of the oral condition due to its good influence on the tongue coating microbiome.

Read full abstract
Open Access Icon Open Access