Year Year arrow
arrow-active-down-0
Publisher Publisher arrow
arrow-active-down-1
Journal
1
Journal arrow
arrow-active-down-2
Institution Institution arrow
arrow-active-down-3
Institution Country Institution Country arrow
arrow-active-down-4
Publication Type Publication Type arrow
arrow-active-down-5
Field Of Study Field Of Study arrow
arrow-active-down-6
Topics Topics arrow
arrow-active-down-7
Open Access Open Access arrow
arrow-active-down-8
Language Language arrow
arrow-active-down-9
Filter Icon Filter 1
Year Year arrow
arrow-active-down-0
Publisher Publisher arrow
arrow-active-down-1
Journal
1
Journal arrow
arrow-active-down-2
Institution Institution arrow
arrow-active-down-3
Institution Country Institution Country arrow
arrow-active-down-4
Publication Type Publication Type arrow
arrow-active-down-5
Field Of Study Field Of Study arrow
arrow-active-down-6
Topics Topics arrow
arrow-active-down-7
Open Access Open Access arrow
arrow-active-down-8
Language Language arrow
arrow-active-down-9
Filter Icon Filter 1
Export
Sort by: Relevance
Antimicrobial Nanotubes: From Synthesis and Promising Antimicrobial Upshots to Unanticipated Toxicities, Strategies to Limit Them, and Regulatory Issues.

Nanotubes (NTs) are nanosized tube-like structured materials made from various substances such as carbon, boron, or silicon. Carbon nanomaterials (CNMs), including carbon nanotubes (CNTs), graphene/graphene oxide (G/GO), and fullerenes, have good interatomic interactions and possess special characteristics, exploitable in several applications because of the presence of sp2 and sp3 bonds. Among NTs, CNTs are the most studied compounds due to their nonpareil electrical, mechanical, optical, and biomedical properties. Moreover, single-walled carbon nanotubes (SWNTs) have, in particular, demonstrated high ability as drug delivery systems and in transporting a wide range of chemicals across membranes and into living cells. Therefore, SWNTs, more than other NT structures, have generated interest in medicinal applications, such as target delivery, improved imaging, tissue regeneration, medication, and gene delivery, which provide nanosized devices with higher efficacy and fewer side effects. SWNTs and multi-walled CNTs (MWCNTs) have recently gained a great deal of attention for their antibacterial effects. Unfortunately, numerous recent studies have revealed unanticipated toxicities caused by CNTs. However, contradictory opinions exist regarding these findings. Moreover, the problem of controlling CNT-based products has become particularly evident, especially in relation to their large-scale production and the nanosized forms of the carbon that constitute them. Important directive rules have been approved over the years, but further research and regulatory measures should be introduced for a safer production and utilization of CNTs. Against this background, and after an overview of CNMs and CNTs, the antimicrobial properties of pristine and modified SWNTs and MWCNTs as well as the most relevant in vitro and in vivo studies on their possible toxicity, have been reported. Strategies and preventive behaviour to limit CNT risks have been provided. Finally, a debate on regulatory issues has also been included.

Read full abstract
Open Access Icon Open AccessJust Published Icon Just Published
Flexible Solar Interfacial Evaporators with Photocatalytic Function for Purification of High-Salinity Organic Wastewater.

Solar-driven interfacial water evaporation technology coupled with photocatalytic function is regarded as an emerging approach for treating high-salinity organic wastewater, but it remains challenging to design high-performance solar evaporators with excellent photocatalytic properties. Here, we designed a two-dimensional flexible solar interfacial evaporator with photocatalytic function for the purification of high-salinity organic wastewater. The solar evaporator was prepared by the deposition of Cu-based metal organic frameworks (Cu-MOFs) onto a polyester fabric by solvothermal reaction, during which graphitic carbon nitride was also deposited as carried by Cu-MOFs. The solar evaporator achieves an outstanding evaporation rate of 1.95 kg m-2 h-1 for simulated seawater (3.5 wt% NaCl) under 1 sun. The evaporator also shows efficient evaporation performance and salt resistance for high-concentration saline water due to its outstanding water transport capacity and efficient light absorption ability. Furthermore, salt ions and organic pollutants can be simultaneously removed from high-salinity organic wastewater by the evaporator due to the synergistic effects of adsorption, the photothermal effect and photocatalytic performance. This study successfully integrated photocatalytic technology with solar-driven interfacial evaporation, extending the multifunctionality of solar evaporators for treating high-salinity organic wastewater.

Read full abstract
Open Access Icon Open AccessJust Published Icon Just Published
Toxicological Effects of Silver-Modified Bentonite Nanocomposites on Microalgae: Impact on Cell Growth, Antioxidant Enzymes, and Gene Expression.

The increasing use of nanostructured silver-containing inorganic materials raises concerns about their impact on aquatic organisms. This study assessed the toxicity of silver-modified bentonite composites on Chlamydomonas sp. Two materials were tested: silver-exchanged bentonite (Ben-Ag) and its reduced form (Ben-Ag (H2)).Microalgae were exposed to 0.5 IC50, 1.5 IC50, and 2 IC50. Ben-Ag showed higher toxicity than Ben-Ag (H2), which even promoted algal growth at low doses. Fluorescence microscopy revealed morphological shrinkage in treated cells. Increased phenol content, elevated malondialdehyde (MDA) levels, and altered antioxidant enzyme activities further confirmed Ben-Ag toxicity, along with reduced growth and photosynthetic pigments. Transcriptomic analysis revealed significant changes in gene expression under Ben-Ag exposure. Genes involved in photosynthesis (petB, psbL), caspase activity (casp), and carotenoid metabolism (Q2CHY) were down-regulated, indicating stress-induced damage. In contrast, genes encoding stress response enzymes (SOD, peroxidase), carbon metabolism enzymes (rbcL, PGQ1), and β-carotene biosynthesis (Q2BKT) were up-regulated, reflecting cellular defense mechanisms. Overall, the study highlights the high toxicity of Ben-Ag to Chlamydomonas sp., emphasizing the importance of evaluating environmental risks before using such materials in aquatic environments.

Read full abstract
Open Access Icon Open AccessJust Published Icon Just Published
First-Principles Study on the CO2 Reduction Reaction (CO2RR) Performance of h-BN-Based Single-Atom Catalysts Modified with Transition Metals.

The reasonable design of low-cost, high-activity single-atom catalysts (SACs) is crucial for achieving highly efficient electrochemical CO2RR. In this study, we systematically explore, using density functional theory (DFT), the performance of transition metal (TM = Mn, Fe, Co, Ni, Cu, Zn)-doped defect-type hexagonal boron nitride (h-BN) SACs TM@B-1N (B vacancy) and TM@BN-1 (N vacancy) in both CO2RR and the hydrogen evolution reaction (HER). Integrated crystal orbital Hamiltonian population (ICOHP) analysis reveals that these catalysts weaken the sp orbital hybridization of CO2, which promotes the formation of radical-state intermediates and significantly reduces the energy barrier for the hydrogenation reaction. Therefore, these theoretical calculations indicate that the Mn, Fe, Co@B-1N, and Co@BN-1 systems demonstrate excellent CO2 chemical adsorption properties. In the CO2RR pathway, Mn@B-1N exhibits the lowest limiting potential (UL = -0.524 V), and its higher d-band center (-0.334 eV), which aligns optimally with the adsorbate orbitals, highlights its excellent catalytic activity. Notably, Co@BN-1 exhibits the highest activity in HER, while UL is -0.217 V. Furthermore, comparative analysis reveals that Mn@B-1N shows 16.4 times higher selectivity for CO2RR than for HER. This study provides a theoretical framework for designing bifunctional SACs with selective reaction pathways. Mn@B-1N shows considerable potential for selective CO2 conversion, while Co@BN-1 demonstrates promising prospects for efficient hydrogen production.

Read full abstract
Open Access Icon Open AccessJust Published Icon Just Published
Microwave-Assisted Solvothermal Synthesis of Cesium Tungsten Bronze Nanoparticles.

Cesium tungsten bronzes (CsxWO3), as functional materials with excellent near-infrared shielding properties, demonstrate significant potential for applications in smart windows. However, traditional synthesis methods, such as solid-state reactions and solvothermal/hydrothermal approaches, typically require harsh conditions, including high temperatures (above 200 °C), high pressure, inert atmospheres, or prolonged reaction times. In this study, we propose an optimized microwave-assisted solvothermal synthesis strategy that significantly reduces the severity of reaction conditions through precise parameter control. When benzyl alcohol was employed as the solvent, CsxWO3 nanoparticles could be rapidly synthesized within a relatively short duration of 15 min at 180 °C, or alternatively obtained through 2 h at a low temperature of 140 °C. However, when anhydrous ethanol, which is cost-effective and environmentally friendly, was substituted for benzyl alcohol, successful synthesis was also achieved at 140 °C in 2 h. This method overcomes the limitations of traditional high-pressure reaction systems, achieving efficient crystallization under low-temperature and ambient-pressure conditions while eliminating safety hazards and significantly improving energy efficiency. The resulting materials retain excellent near-infrared shielding performance and visible-light transparency, providing an innovative solution for the safe, rapid, and controllable synthesis of functional nanomaterials.

Read full abstract
Open Access Icon Open AccessJust Published Icon Just Published
Mechanical Improvement of Graphene Oxide Film via the Synergy of Intercalating Highly Oxidized Graphene Oxide and Borate Bridging.

Converting graphene oxide (GO) nanosheets into high-performance paper-like GO films has significant practical value. However, it is still challenging because the mechanical properties significantly decreased when the nanosheets are assembled into films. The simultaneous attainment of high tensile strength, high modulus, and relatively high toughness remains a formidable challenge. Here, we demonstrated an effective approach involving the incorporation of high oxidized graphene oxide (HOGO) and borate, to enhance the mechanical properties of GO films. X-ray photoelectron spectroscopy (XPS) measurements and thermogravimetric analysis-differential scanning calorimetry (TG-DSC) revealed the synergistic effects of hydrogen and covalent bonding from HOGO and borate, respectively. Additionally, wide-angle X-ray scattering (WAXS) analysis indicated a notable enhancement in the orientation of the GO in the resulting films, characterized by the Herman's orientation factor (ƒ = 0.927), attributable to the combined action of hydrogen and covalent bonding. The borate-crosslinked GO+HOGO films exhibited exceptional mechanical properties, with an impressive strength (417.2 MPa), high modulus (43.8 GPa), and relatively high toughness (2.5 MJ m-3). This innovative assembly strategy presents a promising avenue for achieving desirable mechanical properties, thereby enhancing the potential for commercial applications.

Read full abstract
Open Access Icon Open AccessJust Published Icon Just Published
Lithium Intercalation Chemistry in TaS2 Nanosheets for Lithium-Ion Batteries Anodes.

Exploring novel two-dimensional layered transitional metal dichalcogenides and elucidating their reaction mechanism are critical to designing promising anode materials for lithium-ion batteries (LIBs). Herein, a novel layered TaS2 nanosheet was obtained via a typical solid-phase reaction method followed by a simple ball-milling treatment, and first explored experimentally as an anode for LIBs. The TaS2 nanosheet anode delivered an excellent cycling stability, with 234.6 mAh g-1 after 500 cycles at 1 A g-1. The optimized performance could be attributed to the large interlayer spacing, high conductivity, and reduced size of the TaS2 nanosheet, which effectively alleviated the volume change during the reaction process and accelerated the Li+ or e- transport. Especially, the TaS2 nanosheet anode presented an unusual intercalation reaction mechanism, accompanied with a reversible phase transition from the 2H to the 1T phase during the first de-lithiation process, which is evidenced by the multiple ex situ characterizations, further revealing the enhanced electrochemical performance results from the 1T phase with the larger interlayer spacing and higher electrical conductivity. This work provides a novel insight into the intercalation reaction mechanism of TaS2, which shows potential in high-performance LIBs.

Read full abstract
Open Access Icon Open AccessJust Published Icon Just Published
Molecular Dynamics Simulation of the Dynamic Mechanical Behavior of FeNiCrMn High-Entropy Alloy.

High-entropy alloys (HEAs) exhibit excellent properties such as high strength, good ductility, superior corrosion resistance, and thermal stability, making them highly promising for applications in the aerospace, energy, and automotive industries. Among them, the FeNiCrMn HEA demonstrates outstanding corrosion resistance while eliminating the expensive Co element present in the "Cantor" alloy, significantly reducing costs. However, current research on the FeNiCrMn HEA has primarily focused on its corrosion resistance, with relatively limited studies on its mechanical properties. This paper investigated the effects of different crystal orientations, temperatures, and strain rates on the mechanical properties and plastic deformation mechanisms of an equiatomic FeNiCrMn HEA using molecular dynamics simulations. The results revealed that the FeNiCrMn HEA exhibited significant anisotropy under loading along different orientations, with the maximum yield stress observed along the <11-1> direction. During the elastic stage, all crystals maintained a single FCC structure. As strain increased, yielding occurred, accompanied by a sudden drop in stress, which was attributed to the generation of dislocations. The mechanical properties of the FeNiCrMn HEA were highly sensitive to temperature variations. Elevated temperatures intensify atomic thermal vibrations, making it easier for atoms to deviate from their equilibrium positions and facilitating dislocation nucleation and movement. Consequently, the yield strength and yield strain decreased with increasing temperature. In contrast, the yield strength of the FeNiCrMn HEA was relatively insensitive to strain rate variations. Instead, the strain rate primarily affected the alloy's flow stress. During tensile loading, higher strain rates led to higher dislocation densities. When the stress stabilized, the flow stress increased with the strain rate. These findings provide a theoretical foundation for the future development of FeNiCrMn HEAs.

Read full abstract
Open Access Icon Open AccessJust Published Icon Just Published